WELCOME !!!

Modelling Decarbonization Technologies

Thursday, 20 May 2021 14:00 Korea Time (Seoul, GMT+09:00)

John Liu

lgnacio Martin

Glen Guo **郭宣**华

Richard Zhong 仲如浩

Stan Kavale

Modelling Decarbonization Technologies

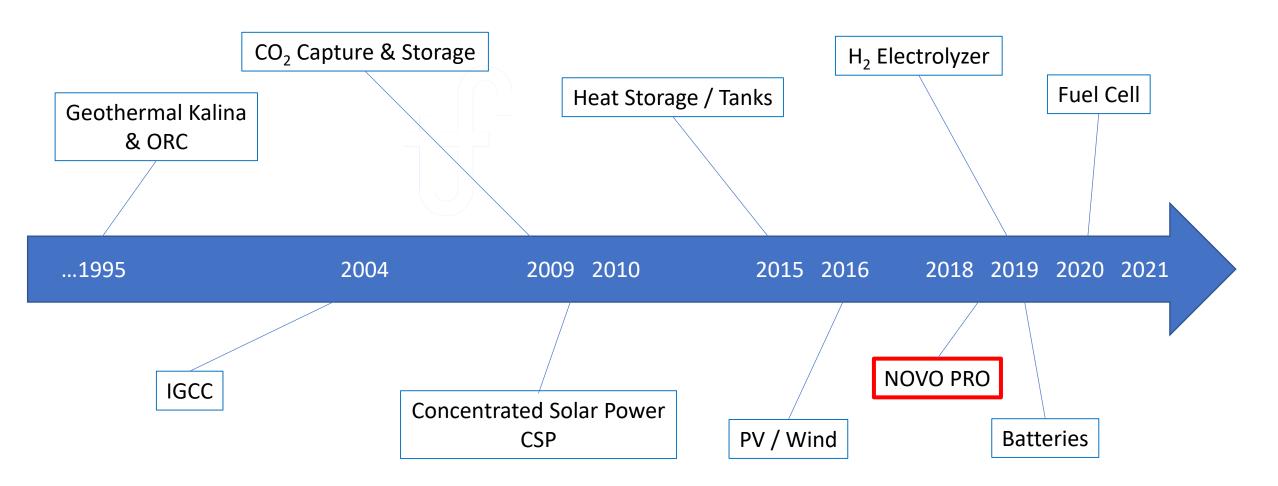
AGENDA – Thursday, 20 May 2021 14:00 Korea Time (Seoul, GMT+09:00):

(1) Welcome & Overview

(2) Demonstration of selected sample files:

- \blacktriangleright Post-combustion CO₂ Capture
- Advanced Supercritical CO₂ cycles (Allam / Graz Cycles)
- Solar Thermal Plants (CSP) and Molten Salt storage
- Modeling Liquid Air Energy Storage
- Coal Boiler replaced by PV + Electric Heater & Molten Salt Storage

(3) NOVO PRO


- Introduction
- Sample 1: 300MW Hybrid Plant (PV + Wind + Thermal Plant), Grid Simulation
- Sample 2: 50MW Open-Cycle Gas Turbine Replacement Project in Australia

(4) Questions & Answers

Thermoflow's Products contribute to the "Green Transition"

Highlights / Milestones...

Decarbonization Technology - OVERVIEW	GT PRO [®] / GT MASTER [®]	STEAM PRO [®] / STEAM MASTER [®]	THERMOFLEX® - PEACE®	NOVO PRO®
Conventional coal plants with flue gas CO ₂ capture		Yes	Yes	FDM link
Biomass and WtE plants with or without flue gas CO ₂ capture		Yes	Yes	FDM link
GT Combined Cycles with flue gas CO ₂ capture	Yes		Yes	FDM link
IGCC plants with flue gas CO ₂ capture	Yes		Yes	FDM link
IGCC (or NG) plants with pre-combustion carbon capture	Yes		Yes	FDM link
Combined Cycle or cogen flexibly integrated with SMR pre-combustion carbon capture			Yes	FDM link
Oxy-fuel coal fired plants		"Yes"	Yes	FDM link
Supercritical CO ₂ /Oxy-Fuel cycles incl. "Allam Cycle" and "Graz Cycle"			Yes	FDM link
Solar Thermal (CSP), and/or integrated solar thermal systems (e.g. ISSCC)			Yes	DU Ren + TFX
Liquid Air Energy Storage (LAES)			Yes	DU Storage
Wind Farms and Power-to-X, Electric Heater, Heat Pumps, Heat Storages			Yes	Yes
PV Plants and Power-to-X, storages, Electric Heater, Heat Pumps, Heat Storages			Yes	Yes
Hydrogen production			Yes	Yes
Hydrogen as fuel in any thermal plant	Yes	Yes	Yes	FDM link
Batteries, Pumped Hydro, User-Defined Storage, Heat Storages, Fuel Cell			Yes	Yes

ff Thermoflow

Decarbonization Technology	Sample File in Library	PAGE 1 of 2
Conventional coal plants with flue gas CO ₂ capture	THERMOFLEX file: Coal Plant (STM) Linked to CCS (S6-14) Conventional coal plant with flue gas CO ₂ capture.STP	
Biomass and WtE plants with or without flue gas CO ₂ capture	THERMOFLEX file: Waste to Energy (S2-15a) MSW plant with flue gas CO ₂ capture.STP MSW plant without flue gas CO ₂ capture.STP	
GT Combined Cycles with flue gas CO ₂ capture	Conventional NG cmbined cycle with flue gas CO ₂ capture.	GTP
IGCC plants with flue gas CO ₂ capture	THERMOFLEX files: IGCC with post-combustion CCS (S5-16 IGCC plant with flue gas CO ₂ capture.GTP	a), (S5-17a)
IGCC (or NG) plants with pre-combustion carbon capture	THERMOFLEX files: IGCC with pre-combustion CCS (S5-16b IGCC plant with pre-combustion carbon capture.GTP), (S5-17b)
Combined Cycle or cogen flexibly integrated with steam-methane reformer (SMR) pre-combustion carbon capture	THERMOFLEX file: Simple steam methane reformer (S6-18)
Oxy-fuel coal fired plants	THERMOFLEX files: Supercritical PC with post-comustion C Supercritical Oxy-fuel PC with post-combustion CCS THERM 14a), (S5-14c) Pressurized CFB Oxy-fuel with CCS THERMOFLEX file (S5-22) Hybrid GT Oxy-fuel with CCS THERMOFLEX files (S5-13), (S2)	AOFLEX files (S5-
Supercritical CO_2/Oxy -Fuel cycles incl. "Allam Cycle" and "Graz Cycle"	THERMOFLEX files: Graz Cycle (Oxy-Fuel) (S5-29) Allam Cycle (Oxy-Fuel) (S5-25a), (S525b), (S5-25c)	
f Thermoflow	© 20	021 Thermoflow Inc.

Decarbonization Te	echnology	Sample File in Library PAGE 2 of						
Solar Thermal (CSP), a (e.g. ISSCC)	and/or integrated solar thermal systems	THERMOFLEX files: Solar Thermal (S5-07), (S5-07a), (S5-09), (S5-09b), (S5-10), (S5-10a) Integrated Solar GTCC (S5-08) Integrated Solar Gas Turbine Cycle (S5-08b)						
Liquid Air Energy Sto			(S5-30a) ing (S5-30c)					
			ing (33-30c)					
Wind Farms and Pow Heat Pumps	and more samples: <u>http://th</u>	nermoflow.com/decarbonization.html	(S5-23), (S3-22b),					
PV Plants and Power-								
Hydrogen production	from Wind and PV	THERMOFLEX file: Wind to Hydrogen (S5-24a)						
Hydrogen production	from Steam-Methane Reformer SMR	THERMOFLEX file: Steam Methane Reformer (S6-18)						
Batteries, Pumped Hy Fuel Cell	dro, User-Defined Storage, Heat Storages,	THERMOFLEX file: Absorption Chiller + Stratified Storage Tank THERMOFLEX files (S3-24)						

Sample Files – default folder: "C:\Program Files (x86)\Thermoflow 29\Samples"

Modelling Decarbonization Technologies

AGENDA – Thursday, 20. May 2021 14:00 Korea Time (Seoul, GMT+09:00):

(1) Welcome & Overview (15 min)

(2) Demonstration of selected sample files:

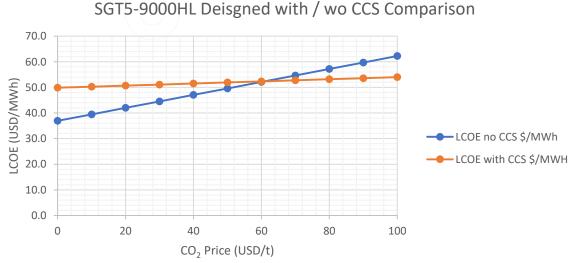
- Post-combustion CO₂ Capture
- \rightarrow Advanced Supercritical CO₂ cycles (Allam / Graz Cycles)
- Solar Thermal Plants (CSP) and Molten Salt storage
- Modeling Liquid Air Energy Storage
- Coal Boiler replaced by PV + Electric Heater & Molten Salt Storage

(3) NOVO PRO

- Introduction
- Sample 1: 300MW Hybrid Plant (PV + Wind + Thermal Plant), Grid Simulation
- Sample 2: 50MW Open-Cycle Gas Turbine Replacement Project in Australia

(4) Questions & Answers

Post-combustion CCS in Combined Cycle (GTPM/TFX)

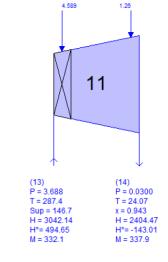

• Brief introduction of CCS system in GTP

Flue Gas CO₂ Capture Process Flow Diagram

Amine-based / Advanced

• Model new GTCC projects with CCS in GTP

Rapid analysis of the Power Output, Heat consumption, CO₂ emissions, Economic parameters, etc


Post-combustion CCS in Combined Cycle (GTPM/TFX)

• Add CCS to existing power plants, with THERMOFLEX

ermoflow

(GTP/GTM -> TFX) Mixed TD + OD mode

			N	lew plant	Existing plant						
				2)with CCS							
			1)no CCS	@ design point (!)	3)no CCS	4)Add CCS					
	Plant gross output	MW	859.0	799.8	859.0	796.9					
	Plant net output	MW	837.4	738.9	837.4	734.8					
	Plant net elec. eff (LHV)	%	61.46%	54.23%	61.46%	53.92%					
	Group LPTL - Group inlet massflow	t/h	653.7	335.1	653.7	332.1					
	Group LPTL - Group inlet pressure	bar	3.4	3.7	3.4	1.76					
Heat Balance	Group LPTL - Group inlet temperature	С	279.8	289.6	279.8	284.9					
	CO2 Capture Steam Mass Flow	t/h	-	326.0	-	326.1					
	CO2 Capture Steam Pressure	bar	-	3.45	-	3.45					
	CO2 Capture Steam Temperature	С	-	287.5	-	287.1					
	CO2 Capture Efficiency	%	-	85%	-	85%					
	Stack CO2	t/h	270.6	40.6	270.6	40.6					
	Specific Investment	USD/kW	654	1531							
	Internal Rate of Return on Investment (ROI)	%	27.33	10.99							
	Internal Rate of Return on Equity (ROE)	%	68.29	21.45							
Feenomies	Net Present Value	kUSD	1,460,411	695,747							
Economics	Break-even Electricity Price @ Input Fuel Price	USD/kWh	0.037	0.050							
	Assumptions: 1) GT fuel LHV price: 4.265 USD/GJ 2) Operation hours per year (full-load equivalent): 6570 3) Discount rate for NPV calculation: 6%										

Controlled Extraction added to existing ST to maintain the required process steam pressure to feed the CC system.

Alternatively, LPT could be revised to reflect the new (lower) LPT flow after adding the carbon capture system.

Oxyfuel Combustion — Allam Cycle / Graz Cycle (THERMOFLEX)

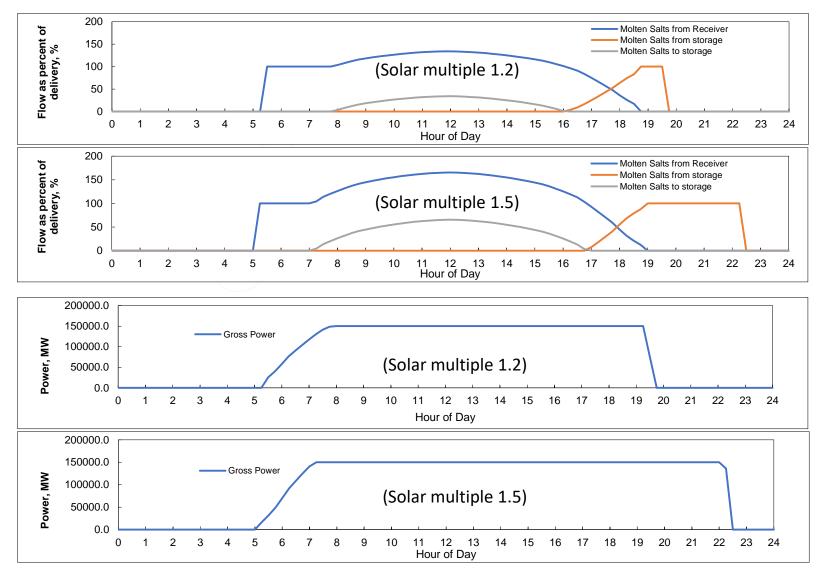
The Allam cycle is a novel CO_2 , oxy-fuel power cycle that utilizes hydrocarbon fuels while inherently capturing approximately 100% of atmospheric emissions, including nearly all CO_2 emissions at a cost of electricity.

Graz Cycle is also a **zero emission** power cycle of high efficiency, which uses well-established gas turbine technology. The combustion with almost pure oxygen and the recycling of the water leads to a working fluid consisting mostly of water and less of CO₂.

- ASU / Oxyfuel Combustion
- Supercritical CO₂ Brayton Cycle
- Use REFPROP (NIST) Property functions
- Steam Cooled Gas Turbine
- Cooled Turbine Stage Calculation

Solar Thermal Tower with Storage (THERMOFLEX & ELINK™)

- Solar thermal energy is the important alternative energy sources of fossil fuels. Solar Thermal Tower with Storage realizes the stable and adjustable power output.
- This sample uses a molten salt power tower together with direct thermal storage in a two-tank configuration.


Rolar Tower w/ Storage [4 File Edit		(Solar mult	iple 1.2) (Se	olar multir	ole 1	
Solar Tower w/ Storage [40]	Estimated Collector, Field, and Direct Storage System Data					
Component Graphic	Solar Tower w/ Storage [40]	Solar Tower w/ Storage [40]				
Heat Balance Collector Description	1. Field					
Storage System	Number of tower fields	1		1		
Specification	Tower structure height	500.3	ft	559.3	ft	
Collector Plan	Tower inner diameter	51.61	ft	57.69	ft	
Flow Diagram	Reflective area	10054150	ft^2	12564626	ft^2	
Irradiance Graph	Number of heliostats	14968		18706		
Wiew/Edit Note	Heliostat field land area	55242584	ft^2	69036408	ft^2	
	Heliostat field land area	1268.2	acre	1584.9	acre	
	Total encompassed land area	55489204	ft^2	69344608	ft^2	
	Total encompassed land area	1273.9	acre	1591.9	acre	

• Calculate the entire year cases with ELINK. (Solar multiple 1.2 VS 1.5)

4.	Contractor's Price	683,742,000 U	SD	807,341,700 U	ISD
	4. Contractor's Price	683,742,000	USD	807,341,700	USD
	Owner's Soft & Miscellaneous Costs	129,500,000	USD	153,269,200	USD
5.					
	5. Total - Owner's Cost - See Cautionary Note Below	813,242,000	USD	960,610,900	USD
6.					
	6. Plant Net Electric Output	141.9	MW	141.8	I MW

Solar Thermal Tower with Storage (THERMOFLEX & ELINK)

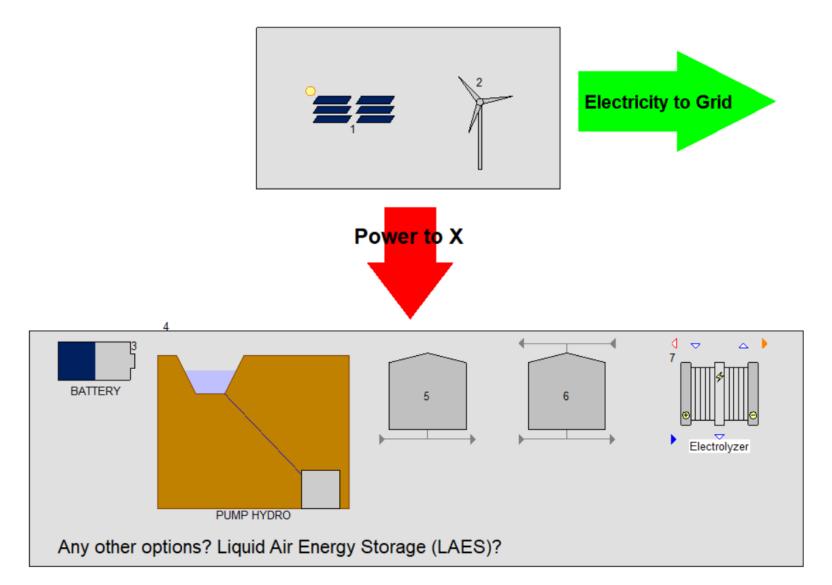
Modelling Decarbonization Technologies

AGENDA – Thursday, 20. May 2021 14:00 Korea Time (Seoul, GMT+09:00):

(1) Welcome & Overview (15 min)

(2) Demonstration of selected sample files:

- \blacktriangleright Post-combustion CO₂ Capture
- Advanced Supercritical CO₂ cycles (Allam / Graz Cycles)
- Solar Thermal Plants (CSP) and Molten Salt storage
- Modeling Liquid Air Energy Storage
- Coal Boiler replaced by PV + Electric Heater & Molten Salt Storage


(3) NOVO PRO

- Introduction
- Sample 1: 300MW Hybrid Plant (PV + Wind + Thermal Plant), Grid Simulation
- Sample 2: 50MW Open-Cycle Gas Turbine Replacement Project in Australia

(4) Questions & Answers

Modelling Liquid Air Energy Storage (LAES) in THERMOFLEX

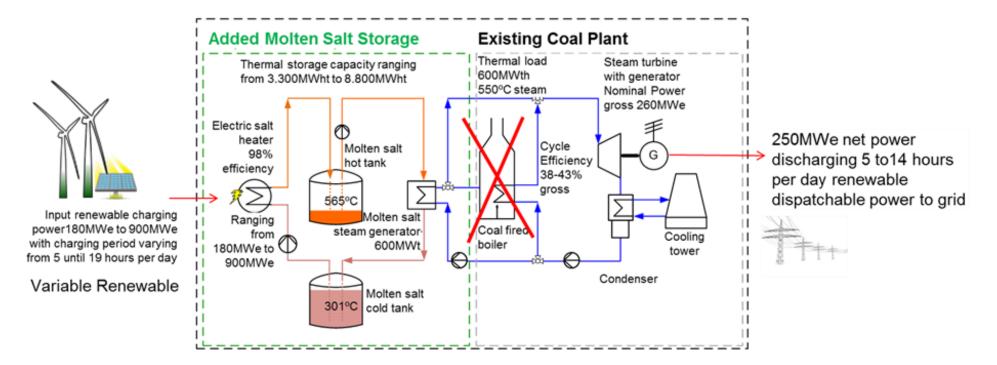
Modelling Liquid Air Energy Storage (LAES) in THERMOFLEX

Energy Storage Mode (TFX Sample: S5-30a)

Consumes pretreated ambient air (no moist and CO₂), produces cold, high pressure, liquefied air (-143 C, 34 bar)

Specific electricity consumption: 292 kWh/tonne, efficiency: 45.7%.

Energy Recovery Mode

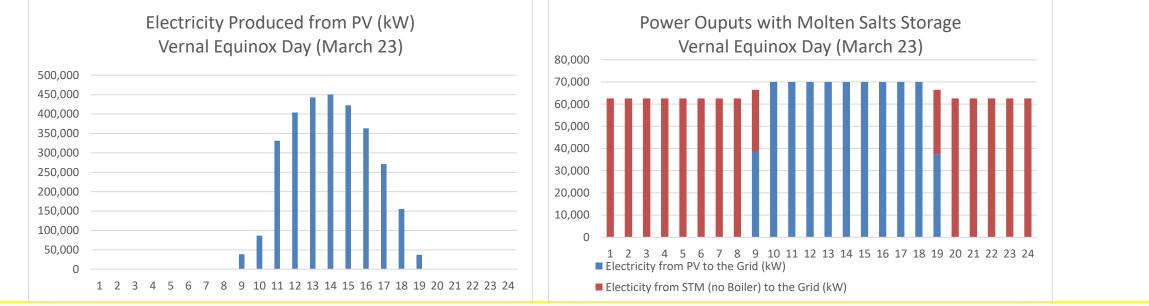

➢TFX Sample: S5-30b: Precooling GT inlet air increases the GT output power; heated Air (to 529 C by GT Exhaust) expands to almost atmospheric pressure

TFX Sample: S5-30c: the air is heated and expanded to atmospheric pressure to produce electricity.
Primary liquefied air heating is to cool the return water from District Cooling.

Coal Boiler replaced by PV + Electric Heater + Molten Salt Storage

Analysis of a 250MWe Chilean Coal Plant

Sensitivity Variant	Unit	V1-01	V1-02	V1-03	V1-O10	V1-011	V1-012
Discharging Duration	[hours]	5,00	5,00	5,00	8,00	12,00	14,00
Thermal storage capacity	[GWht]	3,33	3,33	3,33	5,15	7,57	8,79
Charging Duration	[hours]	5,00	10,00	19,00	11,00	11,00	10,00
Charging el. salt heater capacity	[MWe]	680	340	179	478	703	897


<u>Coal Boiler replaced by PV + Electric Heater + Molten Salt Storage</u>

Remove the boiler in a Coal fired Power plant in STPM

> Design a 70 MW coal fire plants in STP; turn it to a STM model; Select Cycle w/o boiler (TFX link) at Plant Control Mode to remove the boiler

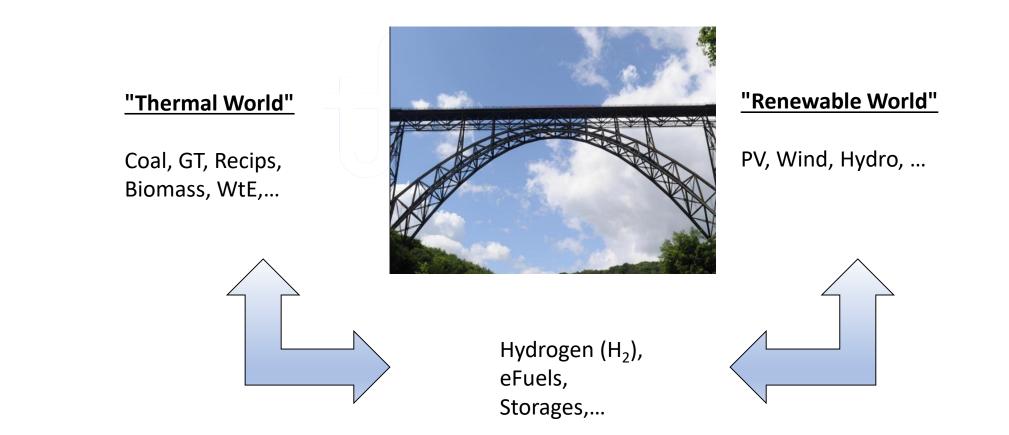
Design PV + Electric Heater + Molten Salts Storage system in TFX

Electricity from PV is used to heat up the molten salts and store the energy; the heated molten salts is used to produce HP steam for the steam turbine to generate electricity whenever the PV electricity is insufficient.

2 NOVO PRO Samples:

(1) Introductory

- 300 MW Hybrid Plant in Arizona / USA


(2) Wind / PV System Sizing

- Open Cycle GT Replacement (50MW) in Australia

What is NOVO PRO?

Design, (grid) simulation and techno-economic optimization of Hybrid Systems

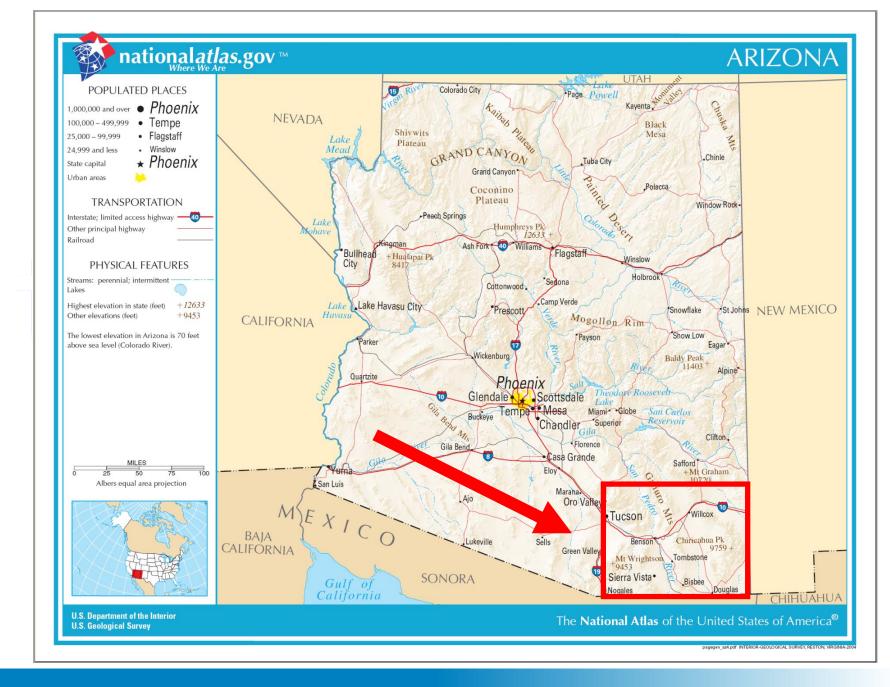
NOVO PRO Sample 1:

Introductory (get started): Hybrid Plant in Arizona / USA

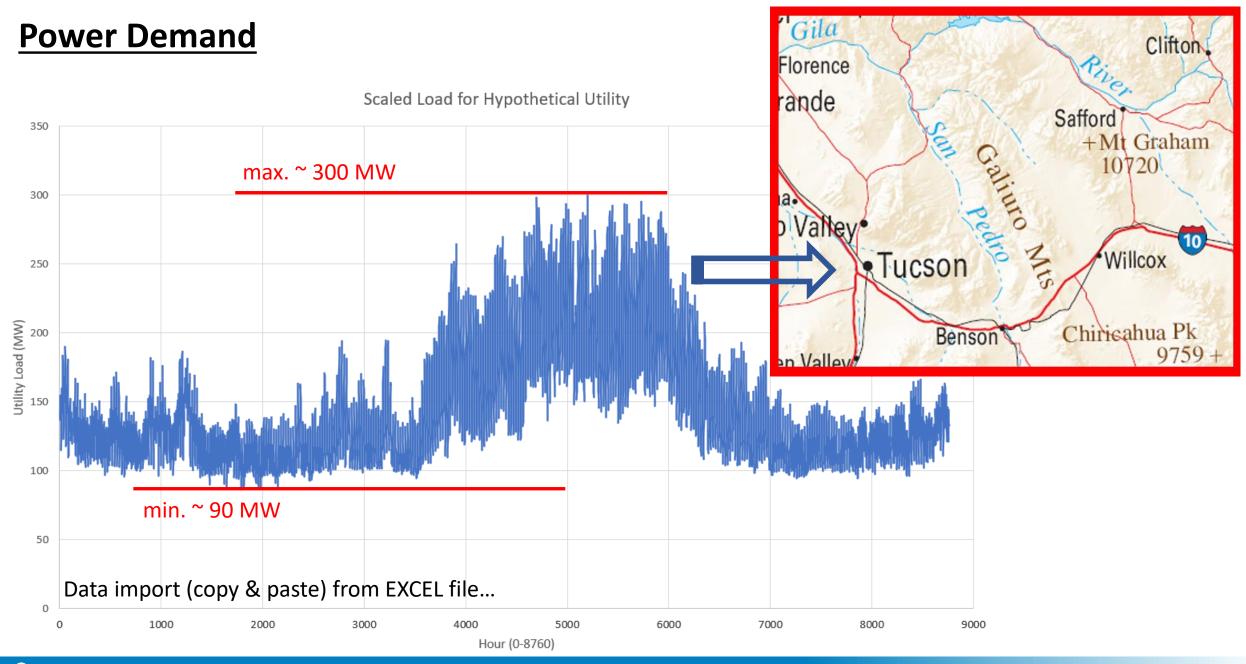
What can I expect from the NOVO PRO Introduction:

- Which inputs are needed to get started ?
- How to setup to site conditions, economical parameters and power demand ?
- How to setup renewable systems: PV Plant and Wind Farm ?
- How to setup a "customized" thermal Power Plant in GT PRO/GT MASTER/ THERMOFLEX and how to import it to NOVO PRO ?
- How to use the NOVO PRO Outputs to analyze and optimize the Hybrid Plant ?

Hypothetical Hybrid Plant Arizona / USA


300MW PV + 300MW Wind + Gas Fired Thermal (Backup) Plant

1 1 9 × -----÷



Location:

Tucson area, Arizona, USA

ff Thermoflow

Ambient Conditions, Wind Resource Data & Solar Irradiation

PV Solar Irradiation Data from: TMY = Typical Meteorological Year

Typical Meteorological Year (TMY): is a set of meteorological data with hourly values in a year for a given location. The data are selected from hourly data in a longer time period (normally 10 years or more). For each month in the year the data have been selected from the year that was considered most "typical" for that month.

Available data in Thermoflow:

- US NREL TMY3 Data
- Environment Canada CWEC Data
- EnergyPlus US/DOE

Google Earth - PV

Benson en Valley

Tucson

Gila

Florence

rande

Wind Resource Data from: built-in ERA5 database

ERA5 / European Copernicus Project - www.Copernicus.eu : provides hourly estimates of a large number of atmospheric, land and oceanic climate data.

Google Earth - Wind

Clitton

+Mt Graham

V illcox

he ahua Pk

975

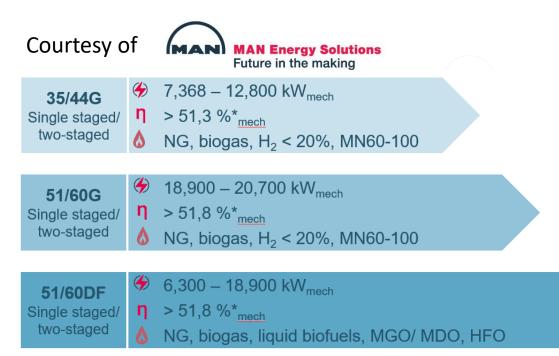
Safford

Chi

Economic Inputs

Demand Power Price: Surplus Power Price: Import Power Price: Gas Fuel Price: 60 USD / MWh 0 USD / MWh no power import 3 USD / GJ

Scenarios


(1) Large F-Class GTCC, 3pRH, 1-1-1 Config., Wet Cooling Tower(2) Reciprocating Gas Engines (open cycle), approx. 10-20 units

(3) Scenario (1) + 300MW PV(4) Scenario (2) + 300MW PV

(5) Scenario (1) + 300MW PV + 300MW Wind(6) Scenario (2) + 300MW PV + 300MW Wind

New MAN Reciprocating Gas Engine Specifications

GT PRO / GT MASTER database:

ID	Manufacturer & Model								
MAN Energy Solutions - Combustion Engines									
734	MAN 12V35/44G TS - 60Hz (**)								
733	MAN 12V35/44G TS - 50Hz (**)								
732	MAN 20V35/44G - 60Hz (**)								
731	MAN 20V35/44G - 50Hz (**)								
736	MAN 20V35/44G TS - 60Hz (**)								
735	MAN 20V35/44G TS - 50Hz (**)								
737	MAN 18V51/60G High Efficiency (**)								
739	MAN 18V51/60G TS High Efficiency (**)								

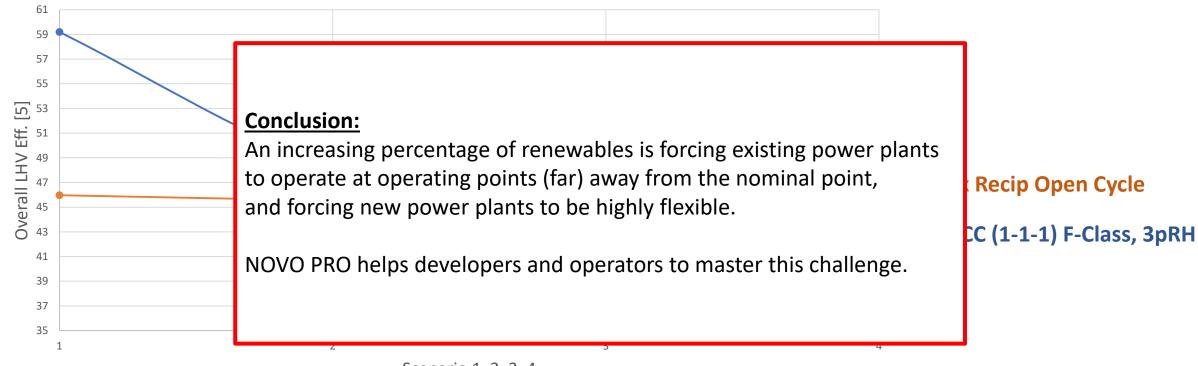
*Reference according ISO 3046-1 & ISO 15550, 5% tol.

New MAN Reciprocating Gas Engine Specifications

NOVO PRO and THERMOFLEX database:

-	ine Sele Illest por	ection Filter- wer 50	kW	Large	st power 20000	kW						
-So	t								Show	50 U -	ongingo 🗔 S	how 60 Hz engines
ſ	Manufa	acturer C	Smal	lest to la	argest power C	Largest to) smallest	power	Show			how Diesel engines
D	Мо	del		Fuel	Aspiration	Mode	RPM	Freq.	Power	Texh	Exh. flo	w Elec. Eff.
								Hz	kW	С	t/h	8
446	MAN	20V35/	44G	G	TA	С	750	50	10420	302	64,76	46,4
447	MAN	20V35/4	44G	G	TA	С	720	60	10027	302	62,32	46,4
448	MAN	18V51/0	60G	G	TA	С	500	50	18654	327	109,31	47,4
449	MAN	18V51/0	60G	G	TA	С	514	60	18654	327	109,31	47,4
451	MAN	12V35/4	44G (TS G	TA	С	750	50	7534	289	43,00	47,9
452	MAN	12V35/4	44G (TS G	TA	С	720	60	7228	289	41,30	47,9
453	MAN	20V35/4	44G (TS G	TA	С	750	50	12582	289	71,70	48,0
454	MAN	20V35/4	44G 🔅	TS G	TA	С	720	60	12071	289	68,80	48,0
457	MAN	18V51/0	60G (TS G	TA	С	500	50	18654	304	112,50	48,3
458	MAN	18V51/0	60G (TS G	TA	С	514	60	18654	304	112,50	48,3
461	MAN	6L51/6	DDF	G	TA	С	500	50	6180	334	37,90	46,3
462	MAN	6L51/6	DDF	G	TA	С	514	60	6180	334	37,90	46,3
465	MAN	6L51/6	DDF	G	TA	С	500	50	6180	364	37,60	45,3
466	MAN	6L51/60	DDF	G	TA	С	514	60	6180	364	37,60	45,3
469	MAN	6L51/60	DDF	G	TA	С	500	50	6769	324	47,10	44,6
470	MAN	6L51/6	DDF	G	TA	С	514	60	6769	324	47,10	44,6
473	MAN	12V51/0	60DF	G	TA	С	500	50	12411	334	75,80	47,2
474	MAN	12V51/0	60DF	G	TA	С	514	60	12411	334	75,80	47,2
477	MAN	12V51/0	60DF	G	TA	С	500	50	12411	364	75,30	45,8
478	MAN	12V51/0	60DF	G	TA	С	514	60	12411	364	75,30	45,8
481	MAN	12V51/0	60DF	G	TA	С	500	50	13593	315	94,30	45,0
482	MAN	12V51/0	60DF	G	TA	С	514	60	13593	315	94,30	45,0
485	MAN	18V51/0	60DF	G	TA	С	500	50	18654	334	113,70	47,3
486	MAN	18V51/0	60DF	G	TA	С	514	60	18654	334	113,70	47,3
489	MAN	18751/0	60DF	G	TA	С	500	50	18654		112,90	45,9
490	MAN	18751/0	60DF	G	TA	С	514	60	18654		112,90	45,9
		18751/0		TS G	TA	С	500	50	18654		116,50	48,8
		18V51/0			ТА	С	514	60	18654		116,50	48,8

Summary NOVO PRO Outputs


		Nom	ninal	Thermal only (grid simulation)		Thermal + 3 (grid sim		Thermal + 300MW PV + 300MW Wind (grid sim.)	
		GTCC	Recips	GTCC	Recips	GTCC	Recips	GTCC	Recips
Gross Power	[kW]	393.016	317.118						
Net Power	[kW]	382.588	307.644						
Net El. Eff.	[%]	59,19	45,97						
								\rightarrow	
Capacity Factor	[%]			38,82	46,98	25,98	31,45	22,46	27,18
Overall LHV Eff.	[%]			48,33	45,53	44,89	45,1	43,04	44,94
Fuel									
Consumption	[GJ]			9.431.993	10.011.260	6.798.060	6.765.180	6.126.693	5.867.830
CO ₂ production	t/year			517.028	550.086	372.645	371.724	335.843	322.418
Total Owner's									
Costs	[USD]	305.120.000	220.119.000	305.120.000	220.119.000	661.200.000	576.199.000	1.112.953.000	1.027.951.000

Capacity Factor describes the relative power output for the power plant compared to a theoretical output where the plant operates at rated output for the same number of hours.

Summary NOVO PRO Outputs

Overall LHV Eff. [%]

1: Nominal / Design Point Performance

2: Thermal Power Plant only

3: Thermal Power Plant + 300MW PV

4: Thermal Power Plant + 300MW PV + 300MW Wind

ff Thermoflow

Introduction

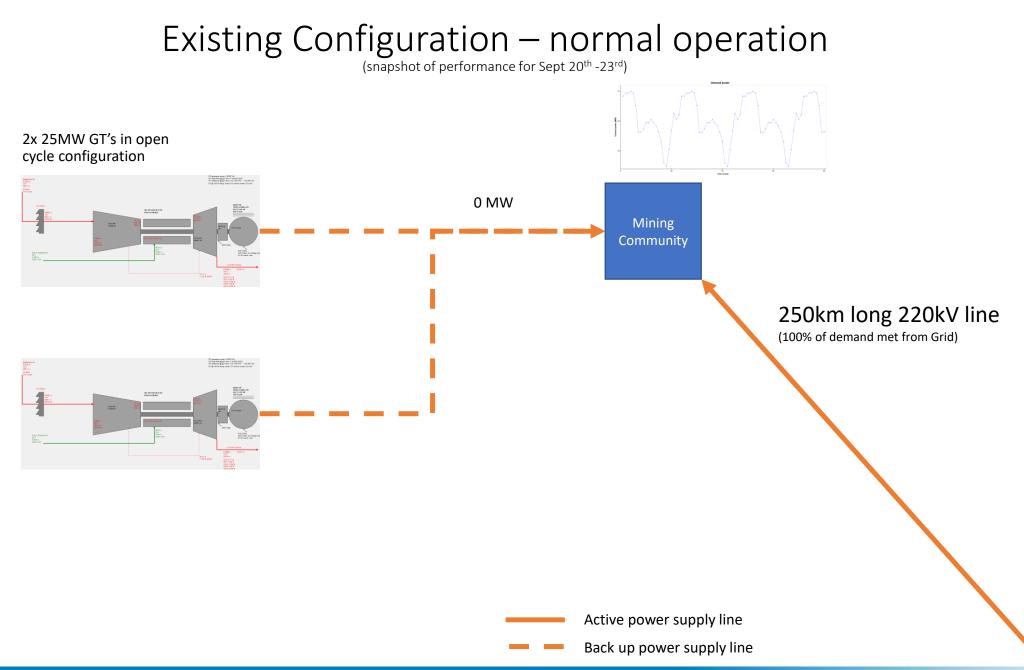
A remote mining location (NSW, Australia) with an existing grid connection is to have its existing 50MW OCGT back-up PP replaced by an installation combining Wind and Solar PV with storage.

Two configurations of renewables plant are considered, differing only in the energy storage technology:

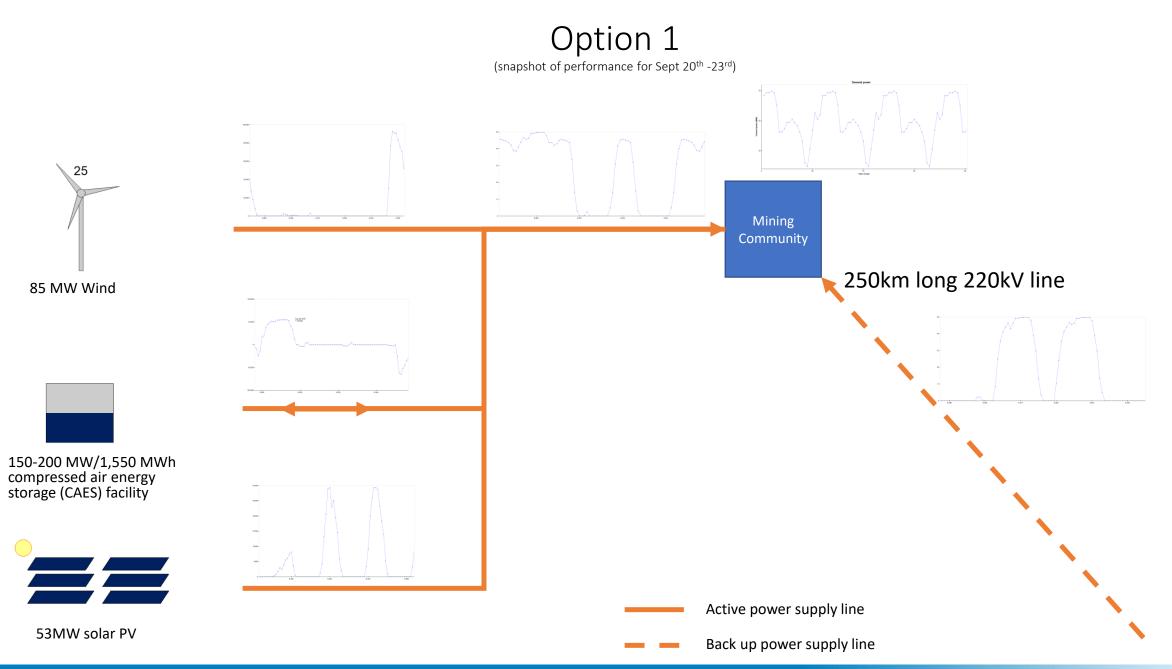
- Option 1: 53MW Solar, qty "x" wind turbines (Silverton wind farm) + 150-200 MW/1,550 MWh CAES
- Option 2: 53MW Solar, qty "y" wind turbines (Silverton wind farm) + 62.5 MW/250 MWh BESS (Li Ion type)

The existing configuration is to be compared to the performance of Options 1 & 2 and suitable conclusions made.

Method


GT PRO is used to establish the 50MW OCGT fuel demand model for subsequent use in NOVO PRO.

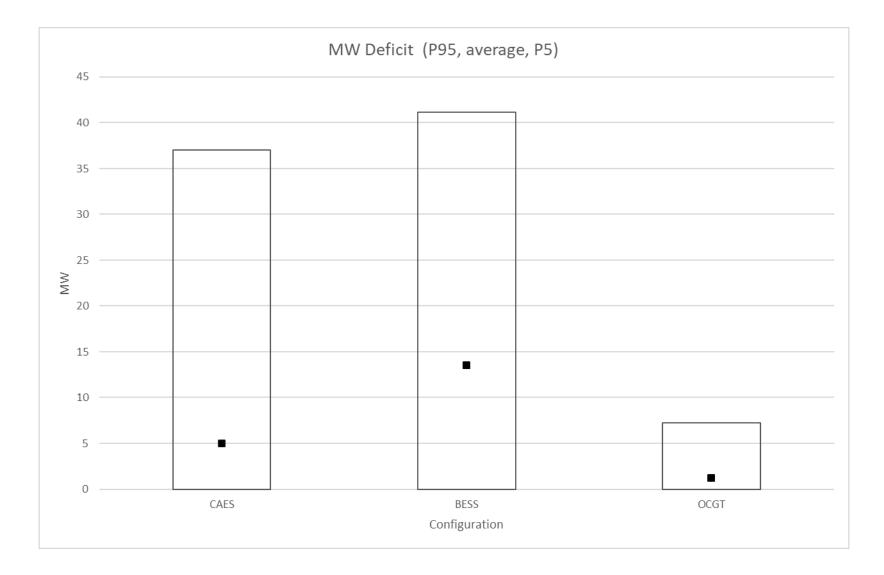
Demand power, demand power price and site data are determined. NOVO PRO is used to model the existing case plus Options 1 & 2. Manipulations are carried out to determine the optimum wind turbine count for each Option.


NOVO PRO outputs are used to determine the economics of the options and existing case and conclusions are drawn.

Findings

Option 1 is more expensive than Option 2 and consequently offers inferior financial performance. Both options have inferior performance relative to the existing OCGT in terms of expected import power requirement (up to 41MW for Options 1 & 2, approx. 7MW for the OCGT plant). The advantage of Option 1 and Option 2 over the existing OCGT is the CO₂ emissions (zero for Options 1 & 2, range from zero to 274000 t/yr for the OCGT). Retaining the OCGT plant may be a good idea in light of the fluctuating import power requirement.

ff Thermoflow



H Thermoflow

+ Thermoflow

MW Deficit Box Plot

Thank you !!!

Questions? Email us: info@thermoflow.com

